1,694 research outputs found

    Photonuclear sum rules and the tetrahedral configuration of 4^4He

    Get PDF
    Three well known photonuclear sum rules (SR), i.e. the Thomas-Reiche-Kuhn, the bremsstrahlungs and the polarizability SR are calculated for 4He with the realistic nucleon-nucleon potential Argonne V18 and the three-nucleon force Urbana IX. The relation between these sum rules and the corresponding energy weighted integrals of the cross section is discussed. Two additional equivalences for the bremsstrahlungs SR are given, which connect it to the proton-neutron and neutron-neutron distances. Using them, together with our result for the bremsstrahlungs SR, we find a deviation from the tetrahedral symmetry of the spatial configuration of 4He. The possibility to access this deviation experimentally is discussed.Comment: 13 pages, 1 tabl

    Towards Integrability of Topological Strings I: Three-forms on Calabi-Yau manifolds

    Full text link
    The precise relation between Kodaira-Spencer path integral and a particular wave function in seven dimensional quadratic field theory is established. The special properties of three-forms in 6d, as well as Hitchin's action functional, play an important role. The latter defines a quantum field theory similar to Polyakov's formulation of 2d gravity; the curious analogy with world-sheet action of bosonic string is also pointed out.Comment: 31 page

    Proton structure corrections to electronic and muonic hydrogen hyperfine splitting

    Full text link
    We present a precise determination of the polarizability and other proton structure dependent contributions to the hydrogen hyperfine splitting, based heavily on the most recent published data on proton spin dependent structure functions from the EG1 experiment at the Jefferson Laboratory. As a result, the total calculated hyperfine splitting now has a standard deviation slightly under 1 part-per-million, and is about 1 standard deviation away from the measured value. We also present results for muonic hydrogen hyperfine splitting, taking care to ensure the compatibility of the recoil and polarizability terms.Comment: 9 pages, 1 figur

    High Energy Photon-Photon Collisions at a Linear Collider

    Full text link
    High intensity back-scattered laser beams will allow the efficient conversion of a substantial fraction of the incident lepton energy into high energy photons, thus significantly extending the physics capabilities of an electron-electron or electron-positron linear collider. The annihilation of two photons produces C=+ final states in virtually all angular momentum states. The annihilation of polarized photons into the Higgs boson determines its fundamental two-photon coupling as well as determining its parity. Other novel two-photon processes include the two-photon production of charged lepton pairs, vector boson pairs, as well as supersymmetric squark and slepton pairs and Higgstrahlung. The one-loop box diagram leads to the production of pairs of neutral particles. High energy photon-photon collisions can also provide a remarkably background-free laboratory for studying possibly anomalous WWW W collisions and annihilation. In the case of QCD, each photon can materialize as a quark anti-quark pair which interact via multiple gluon exchange. The diffractive channels in photon-photon collisions allow a novel look at the QCD pomeron and odderon. Odderon exchange can be identified by looking at the heavy quark asymmetry. In the case of electron-photon collisions, one can measure the photon structure functions and its various components. Exclusive hadron production processes in photon-photon collisions test QCD at the amplitude level and measure the hadron distribution amplitudes which control exclusive semi-leptonic and two-body hadronic B-decays.Comment: Invited talk, presented at the 5th International Workshop On Electron-Electron Interactions At TeV Energies, Santa Cruz, California, 12-14 December 200

    Quantum matter wave dynamics with moving mirrors

    Full text link
    When a stationary reflecting wall acting as a perfect mirror for an atomic beam with well defined incident velocity is suddenly removed, the density profile develops during the time evolution an oscillatory pattern known as diffraction in time. The interference fringes are suppressed or their visibility is diminished by several effects such as averaging over a distribution of incident velocities, apodization of the aperture function, atom-atom interactions, imperfect reflection or environmental noise. However, when the mirror moves with finite velocity along the direction of propagation of the beam, the visibility of the fringes is enhanced. For mirror velocities below beam velocity, as used for slowing down the beam, the matter wave splits into three regions separated by space-time points with classical analogues. For mirror velocities above beam velocity a visibility enhancement occurs without a classical counterpart. When the velocity of the beam approaches that of the mirror the density oscillations rise by a factor 1.8 over the stationary value.Comment: 5.2 pages, 6 figure

    Quantitative uniqueness for elliptic equations with singular lower order terms

    Full text link
    We use a Carleman type inequality of Koch and Tataru to obtain quantitative estimates of unique continuation for solutions of second order elliptic equations with singular lower order terms. First we prove a three sphere inequality and then describe two methods of propagation of smallness from sets of positive measure.Comment: 23 pages, v2 small changes are done and some mistakes are correcte
    • …
    corecore